Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Adv Med Sci ; 69(1): 198-207, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38555007

RESUMO

We present the results of an association study involving hospitalized coronavirus disease 2019 (COVID-19) patients with a clinical background during the 3rd pandemic wave of COVID-19 in Slovakia. Seventeen single nucleotide variants (SNVs) in the eleven most relevant genes, according to the COVID-19 Host Genetics Initiative, were investigated. Our study confirms the validity of the influence of LZTFL1 and 2'-5'-oligoadenylate synthetase (OAS)1/OAS3 genetic variants on the severity of COVID-19. For two LZTFL1 SNVs in complete linkage disequilibrium, rs17713054 and rs73064425, the odds ratios of baseline allelic associations and logistic regressions (LR) adjusted for age and sex ranged in the four tested designs from 2.04 to 2.41 and from 2.05 to 3.98, respectively. The OAS1/OAS3 haplotype 'gttg' carrying a functional allele G of splice-acceptor variant rs10774671 manifested its protective function in the Delta pandemic wave. Significant baseline allelic associations of two DPP9 variants in all tested designs and two IFNAR2 variants in the Omicron pandemic wave were not confirmed by adjusted LR. Nevertheless, adjusted LR showed significant associations of NOTCH4 rs3131294 and TYK2 rs2304256 variants with severity of COVID-19. Hospitalized patients' reported comorbidities were not correlated with genetic variants, except for obesity, smoking (IFNAR2), and hypertension (NOTCH4). The results of our study suggest that host genetic variations have an impact on the severity and duration of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Considering the differences in allelic associations between pandemic waves, they support the hypothesis that every new SARS-CoV-2 variant may modify the host immune response by reconfiguring involved pathways.

2.
Sci Rep ; 14(1): 5514, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448548

RESUMO

In recent decades, we have seen significant technical progress in the modern world, leading to the widespread use of telecommunications systems, electrical appliances, and wireless technologies. These devices generate electromagnetic radiation (EMR) and electromagnetic fields (EMF) most often in the extremely low frequency or radio-frequency range. Therefore, they were included in the group of environmental risk factors that affect the human body and health on a daily basis. In this study, we tested the effect of exposure EMF generated by a new prototype wireless charging system on four human cell lines (normal cell lines-HDFa, NHA; tumor cell lines-SH-SY5Y, T98G). We tested different operating parameters of the wireless power transfer (WPT) device (87-207 kHz, 1.01-1.05 kW, 1.3-1.7 mT) at different exposure times (pulsed 6 × 10 min; continuous 1 × 60 min). We observed the effect of EMF on cell morphology and cytoskeletal changes, cell viability and mitotic activity, cytotoxicity, genotoxicity, and oxidative stress. The results of our study did not show any negative effect of the generated EMF on either normal cells or tumor cell lines. However, in order to be able to estimate the risk, further population and epidemiological studies are needed, which would reveal the clinical consequences of EMF impact.


Assuntos
Campos Eletromagnéticos , Neuroblastoma , Humanos , Campos Eletromagnéticos/efeitos adversos , Neurônios , Linhagem Celular Tumoral , Sobrevivência Celular
3.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473877

RESUMO

Metastatic castration-resistant prostate cancer (mCRPC) remains a lethal disease due to the absence of effective therapies. A more comprehensive understanding of molecular events, encompassing the dysregulation of microRNAs (miRs) and metabolic reprogramming, holds the potential to unveil precise mechanisms underlying mCRPC. This study aims to assess the expression of selected serum exosomal miRs (miR-15a, miR-16, miR-19a-3p, miR-21, and miR-141a-3p) alongside serum metabolomic profiling and their correlation in patients with mCRPC and benign prostate hyperplasia (BPH). Blood serum samples from mCRPC patients (n = 51) and BPH patients (n = 48) underwent metabolome analysis through 1H-NMR spectroscopy. The expression levels of serum exosomal miRs in mCRPC and BPH patients were evaluated using a quantitative real-time polymerase chain reaction (qRT-PCR). The 1H-NMR metabolomics analysis revealed significant alterations in lactate, acetate, citrate, 3-hydroxybutyrate, and branched-chain amino acids (BCAAs, including valine, leucine, and isoleucine) in mCRPC patients compared to BPH patients. MiR-15a, miR-16, miR-19a-3p, and miR-21 exhibited a downregulation of more than twofold in the mCRPC group. Significant correlations were predominantly observed between lactate, citrate, acetate, and miR-15a, miR-16, miR-19a-3p, and miR-21. The importance of integrating metabolome analysis of serum with selected serum exosomal miRs in mCRPC patients has been confirmed, suggesting their potential utility for distinguishing of mCRPC from BPH.


Assuntos
MicroRNAs , Hiperplasia Prostática , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , MicroRNAs/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Soro/metabolismo , Citratos , Lactatos , Acetatos
4.
Stem Cell Res ; 71: 103187, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37643496

RESUMO

Here, we present newly derived in vitro model for modeling Duchenne muscular dystrophy. Our new cell line was derived by reprogramming of peripheral blood mononuclear cells (isolated from blood from pediatric patient) with Sendai virus encoding Yamanaka factors. Derived iPS cells are capable to differentiate in vitro into three germ layers as verified by immunocytochemistry. When differentiated in special medium, our iPSc formed spontaneously beating cardiomyocytes. As cardiomyopathy is the main clinical complication in patients with Duchenne muscular dystrophy, the cell line bearing the dystrophin gene mutation might be of interest to the research community.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Muscular de Duchenne , Humanos , Criança , Leucócitos Mononucleares , Diferenciação Celular , Linhagem Celular
5.
EPMA J ; 14(2): 201-217, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37275547

RESUMO

Since 2009, the European Association for Predictive, Preventive and Personalised Medicine (EPMA, Brussels) promotes the paradigm change from reactive approach to predictive, preventive, and personalized medicine (PPPM/3PM) to protect individuals in sub-optimal health conditions from the health-to-disease transition, to increase life-quality of the affected patient cohorts improving, therefore, ethical standards and cost-efficacy of healthcare to great benefits of the society at large. The gene-editing technology utilizing CRISPR/Cas gene-editing approach has demonstrated its enormous value as a powerful tool in a broad spectrum of bio/medical research areas. Further, CRISPR/Cas gene-editing system is considered applicable to primary and secondary healthcare, in order to prevent disease spread and to treat clinically manifested disorders, involving diagnostics of SARS-Cov-2 infection and experimental treatment of COVID-19. Although the principle of the proposed gene editing is simple and elegant, there are a lot of technological challenges and ethical considerations to be solved prior to its broadly scaled clinical implementation. This article highlights technological innovation beyond the state of the art, exemplifies current achievements, discusses unsolved technological and ethical problems, and provides clinically relevant outlook in the framework of 3PM.

6.
EPMA J ; 14(2): 249-273, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37275549

RESUMO

Breast cancer (BC) is the most common female malignancy reaching a pandemic scale worldwide. A comprehensive interplay between genetic alterations and shifted epigenetic regions synergistically leads to disease development and progression into metastatic BC. DNA and histones methylations, as the most studied epigenetic modifications, represent frequent and early events in the process of carcinogenesis. To this end, long non-coding RNAs (lncRNAs) are recognized as potent epigenetic modulators in pathomechanisms of BC by contributing to the regulation of DNA, RNA, and histones' methylation. In turn, the methylation status of DNA, RNA, and histones can affect the level of lncRNAs expression demonstrating the reciprocity of mechanisms involved. Furthermore, lncRNAs might undergo methylation in response to actual medical conditions such as tumor development and treated malignancies. The reciprocity between genome-wide methylation status and long non-coding RNA expression levels in BC remains largely unexplored. Since the bio/medical research in the area is, per evidence, strongly fragmented, the relevance of this reciprocity for BC development and progression has not yet been systematically analyzed. Contextually, the article aims at:consolidating the accumulated knowledge on both-the genome-wide methylation status and corresponding lncRNA expression patterns in BC andhighlighting the potential benefits of this consolidated multi-professional approach for advanced BC management. Based on a big data analysis and machine learning for individualized data interpretation, the proposed approach demonstrates a great potential to promote predictive diagnostics and targeted prevention in the cost-effective primary healthcare (sub-optimal health conditions and protection against the health-to-disease transition) as well as advanced treatment algorithms tailored to the individualized patient profiles in secondary BC care (effective protection against metastatic disease). Clinically relevant examples are provided, including mitochondrial health control and epigenetic regulatory mechanisms involved.

7.
Bratisl Lek Listy ; 124(7): 527-533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37218480

RESUMO

INTRODUCTION: Despite known risk factors for developing type 2 diabetes mellitus (T2D), the research community still tries to discover new markers that would widen our diagnostic and therapeutic approach to diabetes. Therefore, research on microRNA (miR) in diabetes thrives. This study aimed to assess the utility of miR-126, miR-146a, and miR-375 as novel diagnostic markers for T2D. METHODS: We examined relative quantities of miR-126, miR-146a, and miR-375 in the serum of patients with established type 2 diabetes mellitus (n = 68) and compared these with a control group (n = 29). We also undertook a ROC analysis of significantly changed miR to examine their use as a diagnostic test. RESULTS: MiR-126 (p < 0.0001) and miR-146a (p = 0.0005) showed a statistically significant reduction in patients with type 2 diabetes mellitus. MiR-126 also proved to be an exceptional diagnostic test in our study cohort, with high sensitivity (91 %) and specificity (97 %). We did not find any difference in our study groups' relative quantities of miR-375. CONCLUSION: The study proved a statistically significant reduction of miR-126 and miR-146a in patients with T2D (Tab. 4, Fig. 6, Ref. 51). Text in PDF www.elis.sk Keywords: microRNA, epigenetics, genomics, type 2 diabetes mellitus, miR-126, miR-146a and miR-375.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Humanos , Diabetes Mellitus Tipo 2/genética , Projetos Piloto , MicroRNAs/genética
8.
Pathol Res Pract ; 246: 154475, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37121054

RESUMO

The role of PARP inhibitors is to prevent the polymerase from repairing the single-strand break that occurred due to tumor growth and thus induce cell apoptosis when the homologous recombination deficiency (HRD) system is disabled. The eliminated system can be monitored especially in patients with serous ovarian epithelial tumors. Current studies still show the highest progression-free survival (PFS) in the examined groups with BRCA mutant status, even though they are also effective in the case of a disrupted HRD system, apart from BRCA genes. The study cohort consists of women diagnosed with high-grade serous ovarian cancer (HGSOC), after at least two lines of chemotherapy and after relapse of the disease, as determined by ESMO standards and guidelines. The commercially available tool SOPHIA DDM™ (SophiaGenetics, Switzerland) was used to classify the variants after sequencing. The most common variants (pathogenic or likely pathogenic) were in BRCA1 c.1067 A>G (rs1799950) and c.5266dupC (rs80357906) and in BRCA2 c.9976 A>T (rs11571833). Large deletions were detected in one and three cases in the BRCA1 and BRCA2 genes, respectively. A mutation in the BRCA1/2 genes was confirmed in 50% of the examined patients. In the study, we focused on the identification of mutated BRCA genes by a commercially available Sophia DDM™ system to identify a pathogenic or probable pathogenic variant in a cohort of patients with HGSOC in the Slovak population, which could result in better management and stratification of the individual.


Assuntos
Proteína BRCA1 , Neoplasias Ovarianas , Humanos , Feminino , Proteína BRCA1/genética , Proteína BRCA2/genética , Eslováquia , Recidiva Local de Neoplasia/patologia , Neoplasias Ovarianas/patologia , Mutação
9.
Metabolites ; 13(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36984804

RESUMO

Metabolomics is a relatively new research area that focuses mostly on the profiling of selected molecules and metabolites within the organism. A SARS-CoV-2 infection itself can lead to major disturbances in the metabolite profile of the infected individuals. The aim of this study was to analyze metabolomic changes in the urine of patients during the acute phase of COVID-19 and approximately one month after infection in the recovery period. We discuss the observed changes in relation to the alterations resulting from changes in the blood plasma metabolome, as described in our previous study. The metabolome analysis was performed using NMR spectroscopy from the urine of patients and controls. The urine samples were collected at three timepoints, namely upon hospital admission, during hospitalization, and after discharge from the hospital. The acute COVID-19 phase induced massive alterations in the metabolic composition of urine was linked with various changes taking place in the organism. Discriminatory analyses showed the feasibility of successful discrimination of COVID-19 patients from healthy controls based on urinary metabolite levels, with the highest significance assigned to citrate, Hippurate, and pyruvate. Our results show that the metabolomic changes persist one month after the acute phase and that the organism is not fully recovered.

10.
Acta Virol ; 67(1): 3-12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876506

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monitoring in air traffic is important in the prevention of the virus spreading from abroad. The gold standard for SARS-CoV-2 detection is RT-qPCR; however, for early and low viral load detection, a much more sensitive method, such as droplet digital PCR (ddPCR), is required. Our first step was to developed both, ddPCR and RT-qPCR methods, for sensitive SARS-CoV-2 detection. Analysis of ten swab/saliva samples of five Covid-19 patients in different stages of disease showed positivity in 6/10 samples with RT-qPCR and 9/10 with ddPCR. We also used our RT-qPCR method for SARS-CoV-2 detection without the need of RNA extraction, obtaining results in 90-120 minutes. We analyzed 116 self-collected saliva samples from passengers and airport staff arriving from abroad. All samples were negative by RT-qPCR, while 1 was positive, using ddPCR. Lastly, we developed ddPCR assays for SARS-CoV-2 variants identification (alpha, beta, gamma, delta/kappa) that are more economically advantageous when compared to NGS. Our findings demonstrated that saliva samples can be stored at ambient temperature, as we did not observe any significant difference between a fresh sample and the same sample after 24 hours (p = 0.23), hence, saliva collection is the optimal route for sampling airplane passengers. Our results also showed that droplet digital PCR is a more suitable method for detecting virus from saliva, compared to RT-qPCR. Keywords: COVID-19; RT-PCR; ddPCR; SARS-CoV-2; nasopharyngeal swab; saliva.


Assuntos
Viagem Aérea , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Teste para COVID-19 , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase , RNA Viral/genética , Saliva/química , Manejo de Espécimes/métodos
11.
Front Public Health ; 11: 1116636, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960362

RESUMO

Introduction: Coronavirus SARS-CoV-2 is a causative agent responsible for the current global pandemic situation known as COVID-19. Clinical manifestations of COVID-19 include a wide range of symptoms from mild (i.e., cough, fever, dyspnea) to severe pneumonia-like respiratory symptoms. SARS-CoV-2 has been demonstrated to be detectable in the stool of COVID-19 patients. Waste-based epidemiology (WBE) has been shown as a promising approach for early detection and monitoring of SARS-CoV-2 in the local population performed via collection, isolation, and detection of viral pathogens from environmental sources. Methods: In order to select the optimal protocol for monitoring the COVID-19 epidemiological situation in region Turiec, Slovakia, we (1) compared methods for SARS-CoV-2 separation and isolation, including virus precipitation by polyethylene glycol (PEG), virus purification via ultrafiltration (Vivaspin®) and subsequent isolation by NucleoSpin RNA Virus kit (Macherey-Nagel), and direct isolation from wastewater (Zymo Environ Water RNA Kit); (2) evaluated the impact of water freezing on SARS- CoV-2 separation, isolation, and detection; (3) evaluated the role of wastewater filtration on virus stability; and (4) determined appropriate methods including reverse transcription-droplet digital PCR (RT-ddPCR) and real-time quantitative polymerase chain reaction (RT-qPCR) (targeting the same genes, i.e., RdRp and gene E) for quantitative detection of SARS-CoV-2 in wastewater samples. Results: (1) Usage of Zymo Environ Water RNA Kit provided superior quality of isolated RNA in comparison with both ultracentrifugation and PEG precipitation. (2) Freezing of wastewater samples significantly reduces the RNA yield. (3) Filtering is counterproductive when Zymo Environ Water RNA Kit is used. (4) According to the specificity and sensitivity, the RT-ddPCR outperforms RT-qPCR. Discussion: The results of our study suggest that WBE is a valuable early warning alert and represents a non-invasive approach to monitor viral pathogens, thus protects public health on a regional and national level. In addition, we have shown that the sensitivity of testing the samples with a nearer detection limit can be improved by selecting the appropriate combination of enrichment, isolation, and detection methods.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2/genética , RNA Viral , Águas Residuárias , Reação em Cadeia da Polimerase
12.
Artigo em Inglês | MEDLINE | ID: mdl-36669817

RESUMO

As part of a large human biomonitoring study, we conducted occupational monitoring in a glass fibre factory in Slovakia. Shopfloor workers (n = 80), with a matched group of administrators in the same factory (n = 36), were monitored for exposure to glass fibres and to polycyclic aromatic hydrocarbons (PAHs). The impact of occupational exposure on chromosomal aberrations, DNA damage and DNA repair, immunomodulatory markers, and the role of nutritional and lifestyle factors, as well as the effect of polymorphisms in metabolic and DNA repair genes on genetic stability, were investigated. The (enzyme-modified) comet assay was employed to measure DNA strand breaks (SBs) and apurinic sites, oxidised and alkylated bases. Antioxidant status was estimated by resistance to H2O2-induced DNA damage. Base excision repair capacity was measured with an in vitro assay (based on the comet assay). Exposure of workers to fibres was low, but still was associated with higher levels of SBs, and SBs plus oxidised bases, and higher sensitivity to H2O2. Multivariate analysis showed that exposure increased the risk of high levels of SBs by 20%. DNA damage was influenced by antioxidant enzymes catalase and glutathione S-transferase (measured in blood). DNA repair capacity was inversely correlated with DNA damage and positively with antioxidant status. An inverse correlation was found between DNA base oxidation and the percentage of eosinophils (involved in the inflammatory response) in peripheral blood of both exposed and reference groups. Genotypes of XRCC1 variants rs3213245 and rs25487 significantly decreased the risk of high levels of base oxidation, to 0.50 (p = 0.001) and 0.59 (p = 0.001), respectively. Increases in DNA damage owing to glass fibre exposure were significant but modest, and no increases were seen in chromosome aberrations or micronuclei. However, it is of concern that even low levels of exposure to these fibres can cause significant genetic damage.


Assuntos
Antioxidantes , Exposição Ocupacional , Humanos , Monitoramento Biológico , Peróxido de Hidrogênio , Dano ao DNA , Reparo do DNA , Ensaio Cometa , Exposição Ocupacional/efeitos adversos , Aberrações Cromossômicas , DNA , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
13.
Gen Physiol Biophys ; 41(6): 523-533, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36454113

RESUMO

Events associated with the progression of Parkinson´s disease (PD) are closely related to biomembrane dysfunction. The specific role of membrane composition in the conformational stability of alpha synuclein (αS) has already been well documented. Administration of rotenone is one of the best strategies to initiate PD phenotype in animal models. In the present study, daily exposure (14 weeks) of orally administered rotenone (10 mg/kg) was employed in a mouse model. The mitochondrial complex I inhibition resulted in elevated level of αS in whole tissue homogenate of mouse jejunum. In addition, we identified a strong intra-individual correlation between αS level and the specific esterified fatty acids. The observed correlation depends mainly on the acyl chain length. Based on the obtained results, it is suggested that there is a high potential to manipulate fatty acid homeostasis in modulating αS based pathogenesis of PD, at least in experimental conditions.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Camundongos , Animais , Rotenona , Jejuno , Ácidos Graxos , Modelos Animais de Doenças
14.
Viruses ; 14(11)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36366530

RESUMO

To explore a genomic pool of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the pandemic, the Ministry of Health of the Slovak Republic formed a genomics surveillance workgroup, and the Public Health Authority of the Slovak Republic launched a systematic national epidemiological surveillance using whole-genome sequencing (WGS). Six out of seven genomic centers implementing Illumina sequencing technology were involved in the national SARS-CoV-2 virus sequencing program. Here we analyze a total of 33,024 SARS-CoV-2 isolates collected from the Slovak population from 1 March 2021, to 31 March 2022, that were sequenced and analyzed in a consistent manner. Overall, 28,005 out of 30,793 successfully sequenced samples met the criteria to be deposited in the global GISAID database. During this period, we identified four variants of concern (VOC)-Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2) and Omicron (B.1.1.529). In detail, we observed 165 lineages in our dataset, with dominating Alpha, Delta and Omicron in three major consecutive incidence waves. This study aims to describe the results of a routine but high-level SARS-CoV-2 genomic surveillance program. Our study of SARS-CoV-2 genomes in collaboration with the Public Health Authority of the Slovak Republic also helped to inform the public about the epidemiological situation during the pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Eslováquia/epidemiologia , COVID-19/epidemiologia , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Genômica
15.
Gen Physiol Biophys ; 41(5): 393-405, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36222338

RESUMO

Lung carcinoma is the "top killer" of all malignancies in the world. Early diagnosis of lung carcinoma significantly improves patient survival. Screening with biomarkers from peripheral blood could detect more patients at an early stage of the disease. MicroRNAs (miRNAs) could be a possible biomarker. These are 21-23 nucleotide long single-stranded RNA molecules playing an important role in the post-transcriptional regulation of gene activity. Individual miRNAs have the potential to regulate genes responsible for cell proliferation, differentiation, apoptosis, regulate cell cycle in cooperation with pro-oncogenes and tumor suppressor genes. In our study, we determined miRNA expression levels in individual samples of lung carcinoma patients and in a healthy control group. We used the reverse transcription method followed by qRT-PCR. The expression levels of the investigated miRNAs were evaluated in the QIAGEN GeneGlobe Data center software. We demonstrated the significance of miR-126 and let-7g as biomarkers of lung carcinoma in all clinical stages studied. We also observed significantly increased expression of miR-143 and miR-145 at the distant metastasis stage, and significantly decreased expression of miR-133a in the N2 disease group of lung carcinoma patients (N2 disease represents disease with metastases in the ipsilateral mediastinal and/or subcarinal lymph nodes or node). The investigated miRNAs showed no clear potential for detecting potentially resectable (N0-N1), locally advanced (N2) and distant organ metastatic (M1) lung carcinoma.


Assuntos
Carcinoma , Neoplasias Pulmonares , MicroRNAs , Biomarcadores Tumorais/genética , Carcinoma/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Nucleotídeos
17.
Mol Cell Probes ; 66: 101862, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162596

RESUMO

It was documented that the presence of malignancy in an organism causes metabolomic alterations in blood plasma which applies also to breast cancer. Breast cancer is a heterogeneous disease and there are only limited known relations of plasma metabolomic signatures with the tumour characteristics in early BC and knowing them would be of great advantage in noninvasive diagnostics. In this study, we focused on the metabolic alterations in early BC in blood plasma with the aim to identify metabolomic characteristics of BC subtypes. We used 50 early BC patients (FIGO stage I and II), where no additional metabolomic changes from metastatically changed remote organs were to be expected. We compared plasma levels of metabolites against controls and among various molecular and histological BC subtypes. BC patients showed decreased plasma levels of branched-chain amino acids BCAAs (and related keto-acids), histidine pyruvate and alanine balanced with an increased level of 3-hydroxybutyrate. The levels of circulating metabolites were not related to BC molecular subtypes (luminal A/luminal B), histological finding or grade, eventually stage, which indicate that in early BC, the BC patients share common metabolomics fingerprint in blood plasma independent of grade, stage or molecular subtype of BC. We observed statistically significant correlations between tumour proliferation marker Ki-67 level and circulating metabolites: alanine, citrate, tyrosine, glutamine, histidine and proline. This may point out the metabolites those levels could be associated with tumour growth, and conversely, the rate of tumour proliferation could be potentially estimated from plasma metabolites. When analyzing metabolomic changes in BC, we concluded that some of them could be associated with the metabolomic features of cancer cells, but the other observed alterations in blood plasma are the results of the complex mutual biochemical pathways in the comprehensive inter-organ metabolic exchange and communication. In the end, statistical discrimination against controls performed with AUC >0.91 showed the very promising potential of plasma metabolomics in the search for biomarkers for oncologic diseases.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Antígeno Ki-67 , Neoplasias da Mama/metabolismo , Histidina , Metabolômica/métodos , Alanina , Biomarcadores Tumorais
18.
Metabolites ; 12(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35888766

RESUMO

Several relatively recently published studies have shown changes in plasma metabolites in various viral diseases such as Zika, Dengue, RSV or SARS-CoV-1. The aim of this study was to analyze the metabolome profile of patients during acute COVID-19 approximately one month after the acute infection and to compare these results with healthy (SARS-CoV-2-negative) controls. The metabolome analysis was performed by NMR spectroscopy from the peripheral blood of patients and controls. The blood samples were collected on 3 different occasions (at admission, during hospitalization and on control visit after discharge from the hospital). When comparing sample groups (based on the date of acquisition) to controls, there is an indicative shift in metabolomics features based on the time passed after the first sample was taken towards controls. Based on the random forest algorithm, there is a strong discriminatory predictive value between controls and different sample groups (AUC equals 1 for controls versus samples taken at admission, Mathew correlation coefficient equals 1). Significant metabolomic changes persist in patients more than a month after acute SARS-CoV-2 infection. The random forest algorithm shows very strong discrimination (almost ideal) when comparing metabolite levels of patients in two various stages of disease and during the recovery period compared to SARS-CoV-2-negative controls.

19.
Bratisl Lek Listy ; 123(7): 475-48, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35907052

RESUMO

BACKGROUND: Risk for developing papillary thyroid carcinoma (PTC), the most common endocrine malignancy, is thought to be mediated by lifestyle, environmental exposures and genetic factors. Recent progress in the genome-wide association studies of thyroid cancer leads to the identification of several genetic variants conferring risk to this malignancy across different ethnicities. METHODS AND RESULTS: We set out to elucidate the impact of selected single nucleotide polymorphisms (SNPs) on papillary thyroid carcinoma risk and to evaluate the interactions of these genetic variants with associated diseases for the first time in the Slovak population. Six SNPs (rs966423, rs2439302, rs965513, rs116909374, rs1537424 and rs944289) were genotyped in 86 patients with PTC and 99 healthy control subjects. The association analysis and multivariable modelling of PTC risk by the genetic factors, supplemented with a rigorous statistical validation, were performed. One of the six SNPs rs966423 (DIRC3, OR=1.51, p=0.03) was significantly associated with PTC. Next two SNPs rs965513 (PTCSC2, OR=1.34) and rs116909374 (MBIP, OR=0.44) showed a suggestive association. Haplotype TTC (SNPs located on chromosome 14q13) showed a suggestive association with PTC (p=0.07, OR=1.55). In the PTC group, significant associations were observed between rs966423 (DIRC3) and ischemic heart diseases (p=0.009), rs965513 (PTCSC2) and diabetes mellitus (p=0.04) and haplotype 14q13 and musculoskeletal diseases. Next three associations rs966423 (DIRC3) and arterial hypertension; rs116909374 (MBIP) and other benign diseases; rs1537424 (MBIP) and disorder lipid metabolism, rs965513 (PTCSC2) and anti-Tg (thyroglobulin antibody) showed suggestive associations. CONCLUSION: These results indicate that germline variants not only predispose to PTC, but may also be related to other risk factors, including associated diseases. However, these associations were only moderate, and further multi-ethnic studies are required to evaluate the usefulness of these germline variants in the clinical stratification of PTC patients (Tab. 8, Ref. 37).


Assuntos
Carcinoma Papilar , RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Carcinoma Papilar/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Humanos , Polimorfismo de Nucleotídeo Único , Eslováquia , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética
20.
Stem Cell Res ; 63: 102870, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35907349

RESUMO

We present here a new iPS cell line for modeling sporadic form of ALS. Cell line was generated by reprogramming skin fibroblasts isolated with explant culture technology from skin biopsy, donated by ALS patient. For reprogramming, polycistronic self-replicating RNA vector was used and derived iPS cells were characterized by immunocytochemistry and FACS (pluripotent factors expression), karyotyping, STR fingerprinting analysis and in vitro differentiation assay. New cell line showed normal (46, XY) karyotype and differentiated in vitro into cells from three germ layers. STR analysis proved the origin and originality of the cell line.


Assuntos
Esclerose Amiotrófica Lateral , Células-Tronco Pluripotentes Induzidas , Esclerose Amiotrófica Lateral/patologia , Diferenciação Celular , Linhagem Celular , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...